Horizon Scanning Technology
Prioritising Summary

Breast cancer diagnosis using ultrasound elasticity imaging

October 2007
DISCLAIMER: This report is based on information available at the time of research cannot be expected to cover any developments arising from subsequent improvements health technologies. This report is based on a limited literature search and is not a definitive statement on the safety, effectiveness or cost-effectiveness of the health technology covered.

The Commonwealth does not guarantee the accuracy, currency or completeness of the information in this report. This report is not intended to be used as medical advice and intended to be used to diagnose, treat, cure or prevent any disease, nor should it be used therapeutic purposes or as a substitute for a health professional's advice. The Commonwealth does not accept any liability for any injury, loss or damage incurred by use of or reliance the information.

The production of this Horizon scanning prioritising summary was overseen by the Health Policy Advisory Committee on Technology (HealthPACT), a sub-committee of the Medical Services Advisory Committee (MSAC). HealthPACT comprises representatives from departments in all states and territories, the Australia and New Zealand governments; and ASERNIP-S. The Australian Health Ministers’ Advisory Council (AHMAC) supports HealthPACT through funding.

This Horizon scanning prioritising summary was prepared by Adrian Purins, Linda Mundy and Professor Janet Hiller from the National Horizon Scanning Unit, Adelaide Health Technology Assessment, Discipline of Public Health, Mail Drop 511, University of Adelaide, Adelaide, SA, 5005.
PRIORITISING SUMMARY

REGISTER ID: 000339

NAME OF TECHNOLOGY: BREAST CANCER DIAGNOSIS USING ULTRASOUND ELASTICITY IMAGING

PURPOSE AND TARGET GROUP: BREAST CANCER

STAGE OF DEVELOPMENT (IN AUSTRALIA):

☐ Yet to emerge
☐ Experimental
☒ Investigational
☐ Nearly established

☐ Established
☒ Established but changed indication or modification of technique
☐ Should be taken out of use

AUSTRALIAN THERAPEUTIC GOODS ADMINISTRATION APPROVAL

☐ Yes
☒ No
☐ Not applicable

INTERNATIONAL UTILISATION:

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>LEVEL OF USE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trials Underway or Completed</td>
</tr>
</tbody>
</table>

USA	✓		
Australia	✓		
Europe	✓		

IMPACT SUMMARY:

This prioritising summary investigates the emerging use of ultrasound elasticity imaging (USEI) for the diagnosis of breast cancer. This service could be provided by clinics and hospitals, which currently have the facilities to perform ultrasound (US) breast examinations. Siemens Medical Solutions markets the eSie Touch™ elasticity imaging system for select models in its US system range. Hitachi Medical Systems GmbH offers USEI capability in its Hitachi EUB-8500 model.

BACKGROUND

X-ray mammography is widely used in the diagnosis of breast cancer, and is safe and effective, many lesions found using this technique are of an indeterminate nature, and thus require biopsy for definitive status determination. The fact that the majority of biopsies are performed on what eventuate to be benign lesions, means that many...
unnecessary and costly procedures are performed on healthy women (Sehgal et al 2006).

Ultrasound (US) is used as an adjunct to X-ray mammography and has several useful advantages including: the ability to be used for women with dense breast tissue, guiding interventions such as biopsy, and in women for whom exposure to X-ray radiation is contraindicated. US is also useful to determine whether a lesion is malignant or benign (Sehgal et al 2006).

USEI is a modification of standard US to incorporate tissue compression and elasticity measurements to the scan result. Data are collected using the US device both before and after tissue compression. The manner in which the various components of the tissue respond to compression results in slightly different US echogenicity, which can be visualised in real time in a similar way to conventional US. Malignant masses are stiffer and therefore deform less than benign masses. Malignant masses appear darker than benign masses on the elasticity image. In addition, benign masses have better delineated boundaries between the mass and the surrounding tissue. Malignant masses are believed to have a less defined boundary due to the infiltration of the malignancy into the surrounding tissue. These properties are exploited in USEI. When the breast tissue is subjected to compression, benign masses appear to remain the same size due to their definite boundaries, while malignant masses appear larger as the indefinite boundaries are enhanced visually under compression increasing the apparent size of the mass. Thus this technique allows the US device to distinguish between benign and malignant masses (Sehgal et al 2006).

CLINICAL NEED AND BURDEN OF DISEASE

The age-standardised incidence of breast cancer has steadily been rising in Australia reaching 117 per 100,000 women in 2002, which is 80 per cent above the 1983 level. The overall numbers of breast cancer diagnoses is also rising, estimated to be 13,261 in 2006 and predicted to rise to 14,800 in 2011. Despite this, the age-standardised death-rate has decreased from 31.0 deaths per 100,000 women in 1990 to 23.4 per 100,000 in 2004. The total number of female deaths due to breast cancer in 2004 was 2,641. Additionally between 2000-04 there were 601 cases where breast cancer was an associated but not the underlying, cause of death (AIHW & NBCC 2006).

According to Medicare data, which records the use of diagnostic rather than screening mammography, there were 337,918 claims for this procedure in the 2004-05 period. Conventional US may be used as a breast cancer diagnostic tool in young or breastfeeding women, as an adjunct to mammography in women with dense breast tissue, for image guided intervention, and for pre-operative assessment of women with breast cancer. Currently the specificity of mammography and US, with regard to determining whether a lesion is benign or malignant, is quite low. This may result in suspect lesions being biopsied to determine their status. Up to 80 per cent of such lesions are benign and therefore biopsy was unnecessary (Mitka 2007). There is
therefore a need to reduce the number of benign lesions biopsied, both in terms of reducing patient risk and for economic savings.

DIFFUSION

Conventional US is widely available in Australia in clinics and in public and private hospitals. The uptake of USEI would depend on the number of manufacturers offering the technology to current users. Currently Siemens Medical Solutions market an US system capable of imaging using USEI. It is unclear whether current users of Siemens models could upgrade to USEI on their conventional US systems or would have to purchase a new system to obtain the capability. Hitachi Medical Systems GmbH markets the Hitachi EUB-8500 which was used in Thomas et al (2006a).

COMPARATORS

X-ray mammography followed by biopsy is the gold standard for breast cancer diagnosis in Australia. Other comparable techniques used for diagnosing breast cancer are conventional US and magnetic resonance imaging.

The current standard, X-ray mammography, lacks specificity due to its qualitative nature. Many variations can occur in the interpretation of mammograms due to operator variations, image quality, patient factors including the presence of implants or high density breast tissue. Hence the final categorisation of the lesion must be performed by biopsy (Sehgal et al 2006).

SAFETY AND EFFECTIVENESS ISSUES

Several issues have been addressed in the patient studies identified for this summary, including the effectiveness of USEI versus X-ray mammography and conventional US; computer aided analysis of USEI; and inter-operator variability of USEI.

The ability of USEI to distinguish between benign and malignant lesions was reported in a prospective study of 101 consecutive patients referred for biopsy (Regner et al 2006)(level II diagnostic evidence). The lesions were originally detected by conventional US. From this patient group 23 women were excluded either due to indeterminate biopsy pathology, or for technical or assessor training reasons. The majority of lesions were biopsied on the day of the USEI analysis. The USEI assessors were blinded to the results of any patients who had biopsies prior to the USEI scan. The analysis in this study was not performed in real-time. The conventional US and USEI data were collected and further processed off-line to obtain the final US and USEI images. Five assessors were used to analyse the resulting images. The best parameters to distinguish benign lesions from malignant lesions were found to be area ratio or width ratio, that is, either the width or area of the lesion in the US image compared with the width or area of the lesion in the USEI image. The area and width ratios were not significantly different in their ability to distinguish benign or malignant lesions. Overall the sensitivity and specificity of
USEI was 96 and 24 per cent, respectively, for the area ratio; and 96 and 21 per cent, respectively, for the width ratio. Using the area ratio parameter, one assessor obtained a sensitivity of 96 per cent and a specificity of 61 per cent. Better performance was observed when the assessors were able to spend more time on the analysis of the images. Distinguishing benign from malignant lesions was performed poorly when the assessors were in a busy clinical setting. Combined parameters did not have any additive effect to the ability to correctly categorise lesions.

A study using continuous processing of US images to give USEI data showed that the method yielded a sensitivity and specificity of 85 (34/40) and 88 per cent (53/60), respectively (Moon et al 2005)(level III-2 diagnostic evidence). The patient group consisted of 86 consecutive patients who had a total of 100 solid breast tumours. Of these, 60 were benign and 40 were malignant by pathology. The following four parameters were used to analyse the lesions; contour difference, shift distance, area difference; and one shape parameter, solidity. All four of these variables were found to be significantly different for benign and malignant lesions. The continuous method uses several frames obtained during a compression of the breast tissue with the US probe. This was found to be more accurate than the standard comparison of a non-compressed US image to a single image obtained by US during compression. In contrast to the previous study the data analysis was computer aided.

USEI, US and X-ray mammography were compared in a 2007 study using fifty patients with either benign (n=25) or malignant (n=25) lesions (Thomas et al 2007) (level III-2 diagnostic evidence). The analysis of the USEI was performed offline using either maximum strain factor, or area quotient, determined by comparing the US and USEI data. Both these factors were found to be significantly different in benign and malignant lesions, allowing them to be discriminated (Table 1). USEI was as sensitive (96%), and was substantially more specific (80% vs 68%) than US alone. The use of combined US and X-ray mammography greatly increased the sensitivity (ie the ability to correctly identify those who have the disease), but resulted in a much reduced specificity (ie the ability to correctly identify those who do not have the disease).

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>96%</td>
<td>68%</td>
</tr>
<tr>
<td>US+ X-ray mammography</td>
<td>100%</td>
<td>40%</td>
</tr>
<tr>
<td>USEI</td>
<td>96%</td>
<td>80%</td>
</tr>
</tbody>
</table>

Table 1 Sensitivity and specificity for detection of malignant lesions

Adapted from (Thomas et al 2007)

Two studies identified used real-time analysis of the USEI data in contrast to the previous studies which used offline analysis performed after the scan was complete. Real-time analysis, if equal or better than offline processing, would be an improvement to the USEI technique. In the initial study histology was the reference
standard against which USEI was compared and two independent assessors were used to evaluate the lesions (Thomas et al 2006a)(level III-2 diagnostic evidence). Of 108 patients with lesions that were of known status by cytology or histology, 59 had benign and 49 had malignant lesions. The results of US and USEI compared to the reference standard are presented in Table 2. Specificity of USEI was significantly increased when compared to US alone. One noted weakness in this study was that USEI was not able to evaluate lesions deeper than 1cm. In addition, markedly reducing the sensitivity may be unacceptable.

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>PPV (%)</th>
<th>NPV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>91.8</td>
<td>78</td>
<td>77.6</td>
<td>92</td>
</tr>
<tr>
<td>USEI observer 1</td>
<td>77.6</td>
<td>91.5</td>
<td>88.4</td>
<td>83.1</td>
</tr>
<tr>
<td>USEI observer 2</td>
<td>79.6</td>
<td>84.7</td>
<td>81.3</td>
<td>83.3</td>
</tr>
</tbody>
</table>

Adapted from (Thomas et al 2006a)

In a subsequent study involving 300 patients, the ability of USEI to discriminate between malignant and benign lesions was compared to US and X-ray mammography (Thomas et al 2006b) (level III-2 diagnostic evidence). The subject group consisted of 168 patients with benign and 132 patients with malignant lesions. The results of this study indicate that USEI only slightly increases the specificity of detecting malignant breast lesions at the expense of a small decrease in sensitivity (Table 3).

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>94</td>
<td>83</td>
</tr>
<tr>
<td>X-ray mammography</td>
<td>87</td>
<td>85</td>
</tr>
<tr>
<td>USEI</td>
<td>82</td>
<td>87</td>
</tr>
</tbody>
</table>

Adapted from (Thomas et al 2006b)

No safety issues were addressed in the studies analysed in the preparation of this summary.

Most studies demonstrate that USEI gives an increase in specificity compared to US alone, at the expense of a reduction in sensitivity, although there is a wide disparity in the results of studies. The increase in specificity when using USEI is important due the fact that the main weakness of US is its false positive rate, leading to unnecessary biopsies. There appears to be progress from the earlier to the more recent studies which incorporate real time processing and display of the USEI data. In addition, different research groups have used different lesion parameters, cut offs and reference standards to establish the status of a lesion. Further improvements in USEI may be expected as the technology matures and standards and guidelines for which parameters and cut offs are used to determine whether a lesion is malignant or benign.
COST IMPACT
No cost information was found during the preparation of this summary.

ETHICAL, CULTURAL OR RELIGIOUS CONSIDERATIONS
No issues were identified/raised in the sources examined.

OTHER ISSUES
An international, multicentre trial is currently underway to assess USEI.

SUMMARY OF FINDINGS
When diagnosing whether a lesion is malignant or benign the majority of studies reported an increase in the specificity and a decrease in sensitivity compared to US or X-ray. As yet there is no consensus as to which lesion parameters and cut offs are appropriate to use. Recently, real-time USEI has become available and will likely be the method of choice. The increased specificity of USEI may result in a reduced number of unnecessary biopsies being performed, which would benefit the patient and also save on health care costs. However the trade-off with reduced sensitivity is unlikely to be acceptable.

HEALTHPACT ACTION:
The field of USEI is rapidly evolving and shows promise in the deliverance of patient and economic benefits, however, the reduced sensitivity of USEI is of concern. The loss of sensitivity may be addressed by combining both mammography and USEI. In addition, this technology is diffusing rapidly with some centres in Australia currently utilising this technology. Therefore HealthPACT have recommended that this technology be monitored for further information in 12-months time.

NUMBER OF INCLUDED STUDIES
Total number of studies
Level II diagnostic evidence 1
Level III-2 diagnostic evidence 4

REFERENCES:

SEARCH CRITERIA TO BE USED:

Breast Neoplasms/pathology/radiography/ ultrasonography
Elasticity
Female
Humans
Image Processing, Computer-Assisted
Mammography
Image Interpretation, Computer-Assisted