Horizon Scanning Technology
Prioritising Summary

Skip laminectomy for spinal disorders

June 2004
(Updated December 2005)
This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. Requests and inquiries concerning reproduction and rights should be addressed to Commonwealth Copyright Administration, Attorney General’s Department, Robert Garran Offices, National Circuit, Canberra ACT 2600 or posted at http://www.ag.gov.au/cca

Electronic copies can be obtained from http://www.horizonscanning.gov.au

Enquiries about the content of the report should be directed to:

HealthPACT Secretariat
Department of Health and Ageing
MDP 106
GPO Box 9848
Canberra ACT 2606
AUSTRALIA

DISCLAIMER: This report is based on information available at the time of research and cannot be expected to cover any developments arising from subsequent improvements to health technologies. This report is based on a limited literature search and is not a definitive statement on the safety, effectiveness or cost-effectiveness of the health technology covered.

The Commonwealth does not guarantee the accuracy, currency or completeness of the information in this report. This report is not intended to be used as medical advice and it is not intended to be used to diagnose, treat, cure or prevent any disease, nor should it be used for therapeutic purposes or as a substitute for a health professional's advice. The Commonwealth does not accept any liability for any injury, loss or damage incurred by use of or reliance on the information.

The production of this Horizon scanning prioritising summary was overseen by the Health Policy Advisory Committee on Technology (HealthPACT), a sub-committee of the Medical Services Advisory Committee (MSAC). HealthPACT comprises representatives from health departments in all states and territories, the Australia and New Zealand governments; MSAC and ASERNIP-S. The Australian Health Ministers’ Advisory Council (AHMAC) supports HealthPACT through funding.

This Horizon scanning prioritising summary was prepared by staff from the Australian safety and Efficacy Register of New Intervenotional Procedures – Surgical (ASERNIP-S).
NAME OF TECHNOLOGY:
Skip Laminectomy

PURPOSE & TARGET GROUP:
This technique results in the decompression of the cervical spinal canal with minimal invasion of the posterior extensor mechanisms. It may therefore be applicable for treatment of spinal disorders resulting from spinal canal compression such as cervical spondylotic myelopathy, spinal canal stenosis and calcification of ligamentum flavum.

STAGE OF DEVELOPMENT (IN AUSTRALIA): Yet to emerge in Australia
- Experimental
- Investigational
- Nearly Established
- Established
- Established but changed indication or modification of technique
- Should be taken out of use

INTERNATIONAL UTILISATION:

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>LEVEL OF USE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trials underway</td>
</tr>
<tr>
<td>Japan</td>
<td>✓</td>
</tr>
</tbody>
</table>

IMPACT SUMMARY

Background:
Traditionally the treatment of spinal compression disorders such as cervical spondylotic myelopathy, spinal canal stenosis and calcification of ligamentum flavum has involved undertaking a standard laminectomy or laminoplasty.¹ These procedures, whilst accomplishing decompression of the spinal canal, can result in extensive intraoperative damage to the deep extensor muscles resulting in axial symptoms such as nuchal and shoulder pain, neck movement restriction and the reduction of cervical lordosis.²

Skip laminectomy effectively decompresses the spinal canal with minimal damage to the deep extensor mechanism by reducing the number of vertebrae subjected to full laminectomy.¹ The procedure involves undertaking standard laminectomy of alternate vertebrae and a partial laminectomy of the lower adjacent vertebra. Interluminal decompression is accomplished by removing the cephalad half of the inferior lamina and ligamentum flavum without detaching the semispinalis cervicis and multifidus muscles (extensor muscles).²

Clinical need and burden of disease:
The epidemiological impact of disorders that result from compression of the spinal canal in Australia is currently unknown. However, it is known that back and disc problems are a significant cause of ill health within the community, with increased prevalence in the older adult. Figures gathered by the Australian Bureau of Statistics show the 16% of 16-24 year olds and 32% of 55-64 year olds have required medical attention for back and disc problems. However, this statistic should be regarded as the ‘upper limit’ for spinal disorders that could be treated by skip laminectomy due to the fact that this technique is only used for the cervical spine.

Back and disc problems including spinal canal stenosis cause patients substantial discomfort and subsequently impact heavily on employment and social abilities.

Estimated speed, geographic and practitioner use patterns of diffusion in the health system:
Shiraishi and colleagues have performed in excess of 100 skip laminectomy procedures since December 1998, and have since published two papers in 2002 with an update in 2003 of their comparative study.

Existing comparators:
- Laminectomy
- Laminoplasty

Estimated cost impact:
The costs associated with this new procedure are not available. The cost of surgery involving laminectomy or laminoplasty in Australia is also not available. However, reimbursement fees of traditional spinal canal decompression by laminectomy as stated in the Medicare Benefits Schedule is estimated to be approximately $1190.

Efficacy and safety issues:
Short and long-term safety and efficacy data exist from one comparative study (evidence level III-3) with historical control (published in 2002, updated 2003).

<table>
<thead>
<tr>
<th>Study details</th>
<th>Key efficacy findings</th>
<th>Key safety findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparative study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shiraishi et al. (2003)</td>
<td>No significant differences in recovery rates between group 1 (mean 59.2%) and group 2 (mean 60.1%).</td>
<td>No patients in group 1 had neurological complications. These complications occurred in 3/51 (5.7%) group 2 patients.</td>
</tr>
<tr>
<td>94 Patients</td>
<td>Average blood loss was decreased in group 1 (mean 18 mL) compared to group 2 (mean 249 mL).</td>
<td></td>
</tr>
<tr>
<td>Group 1: Skip laminectomy (n=43)</td>
<td>Axial symptoms were decreased in group 1 (1/43 : 2%) compared to group 2 (34/51 : 76%). There was a significant difference in incidence of axial symptoms</td>
<td></td>
</tr>
<tr>
<td>Group 2: Open-door laminectomy (n=51)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean follow-up: Group 1: 30 months Group 2: 43 months</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selection Criteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients with cervical spondylotic myelopathy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Patients also reported in Shiraishi 2002a\(^1\) and some patients in Shiraishi 2002b\(^8\).

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean range of flexion and extension</td>
<td>The mean range of flexion and extension between preoperative and postoperative measurements in group 1 was 98% compared to 44% in group 2. There was a significant difference in range of motion (%) between the two groups (P<0.05).</td>
</tr>
<tr>
<td>Mean cervical curvature index</td>
<td>The mean cervical curvature index in group 1 increased from 11.4 preoperatively to 13.1 postoperatively. Group 2 decreased from 16.0 preoperatively to 11.8 postoperatively. The mean postoperative cervical curvature was significantly smaller than the preoperative in group 2 (P<0.05).</td>
</tr>
<tr>
<td>Mean atrophy rate of extensor muscles</td>
<td>The mean atrophy rate of extensor muscles was lower in group 1 (13.6%) compared to group 2 (59.7%). There was a significant difference in the atrophy rates between the two groups (P<0.05).</td>
</tr>
</tbody>
</table>

Only three studies, with patient overlap, have reported on the safety and efficacy of skip laminectomy as an alternative to standard laminectomy. However, they indicate that skip laminectomy may enable effective decompression of the spinal canal whilst resulting in less axial symptoms, increased range of motion, increased cervical curvature which identified reduction of cervical lordosis and less atrophy of extensor muscles.

December 2005 update

A search of relevant databases, online journals and the internet was conducted in December 2005, following the recommendation in June 2004 that skip laminectomy be monitored for assessment in 18 months time. No new evidence on the safety and efficacy of this technique was retrieved.

Hence, based on the limited evidence to date it is recommended that this procedure be archived.

Ethical issues: Not applicable
Cultural or religious considerations: Not applicable

Other issues: The same research group conducted both studies on which the safety and efficacy of skip laminectomy are based.

Conclusion:
Limited evidence exists on the safety and efficacy of skip laminectomy. Long-term safety and efficacy data from randomised controlled trials may be required before this procedure can be widely accepted.

Update 2005: Due to the limited evidence available, this procedure will be archived.

REFERENCES:

SEARCH CRITERIA:
A search of MEDLINE, PubMed and Cochrane Library, Current Controlled Trials metaRegister, UK National Research Register International, Network for Agencies for Health Technology Assessments, relevant online journals and the Internet was conducted in January 2004.

Search terms used were: ‘skip laminectomy’, ‘partial laminectomy’, ‘Shiraishi T’ and ‘spinal canal decompression’