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Abstract

The Australian Group on Antimicrobial Resistance (AGAR) performs regular period-prevalence 
studies to monitor changes in antimicrobial resistance in selected enteric gram-negative pathogens. 
The 2021 survey was the ninth year to focus on bloodstream infections caused by Enterobacterales, 
and the seventh year where Pseudomonas aeruginosa and Acinetobacter species were included.

The 2021 survey tested 8,947 isolates, comprising Enterobacterales (8,104; 90.6%), P. aeruginosa (745; 
8.3%) and Acinetobacter species (98; 1.1%), using commercial automated methods. The results were 
analysed using Clinical and Laboratory Standards Institute (CLSI) and European Committee on 
Antimicrobial Susceptibility Testing (EUCAST) breakpoints (January 2022). Of the key resistances, 
resistance to the third-generation cephalosporin ceftriaxone was found in 12.5%/12.5% (CLSI/
EUCAST criteria) of Escherichia coli and in 6.1%/6.1% of Klebsiella pneumoniae. Resistance rates to 
ciprofloxacin were 12.3%/12.3% for E. coli; 7.2%/7.2% for K. pneumoniae; 5.4%/5.4% for Enterobacter 
cloacae complex; and 3.7%/8.0% for P.  aeruginosa. Resistance rates to piperacillin-tazobactam 
were 2.8%/6.5%; 2.9%/9.9%; 18.4%/28.1%; and 6.9%/12.8% for the same four species, respectively. 
Seventeen Enterobacterales isolates from 17 patients were shown to harbour a carbapenemase gene: 
12 blaIMP-4; two blaNDM-7; one blaNDM-1; one blaOXA-181; and one blaKPC-2. No transmissible carbapen-
emase genes were detected among P. aeruginosa or Acinetobacter isolates in the 2021 survey.

Keywords: Australian Group on Antimicrobial Resistance (AGAR); antimicrobial resistance; bacte-
raemia; gram-negative; Escherichia coli; Enterobacter; Klebsiella

Annual report

Introduction

Emerging resistance in common pathogenic 
members of the Enterobacterales is a worldwide 
phenomenon and presents therapeutic problems, 
both in the community and in hospital prac-
tice. The Australian Group on Antimicrobial 
Resistance (AGAR) commenced surveillance of 
the key gram-negative pathogens, Escherichia 
coli and Klebsiella species, in 1992. Surveys were 
conducted biennially until 2008 when annual 

surveys commenced, alternating between com-
munity- and hospital-onset infections.i In 2004 
Enterobacter, another genus of gram-negative 
pathogens in which resistance can be of clini-
cal importance, was added. Escherichia  coli is 
the most common cause of community-onset 
urinary tract infection; Klebsiella species 
are less common but are known to harbour 
important resistances. Enterobacter species are 

i		  http://www.agargroup.org.au/agar-surveys.
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less common in the community, but of high 
importance due to intrinsic resistance to first-
line antimicrobials used in that setting. Taken 
together, these three groups of species surveyed 
are valuable sentinels for multi-resistance 
and emerging resistance in enteric gram-
negative bacilli. In 2013 AGAR commenced 
the Enterobacterales Sepsis Outcome Program 
(EnSOP) which focused on the collection of 
resistance data and some demographic data on 
all isolates collected prospectively from patients 
with bacteraemia. In 2015, Pseudomonas aer-
uginosa and Acinetobacter species were added, 
with the program then referred to as the Gram-
negative Sepsis Outcome Program (GnSOP), 
since renamed the Gram-negative Surveillance 
Outcome Program.

Resistance to β-lactams due to β-lactamases, 
especially extended-spectrum β-lactamases that 
inactivate the third-generation cephalosporins 
normally considered reserve antimicrobials, 
is of particular interest. Resistance to agents 
important for treatment of serious infections, 
such as gentamicin, and to reserve agents such 
as ciprofloxacin and meropenem, is also of 
interest.

The objectives of the 2021 surveillance 
program were:

•	 to monitor resistance in Enterobacterales, 
P. aeruginosa and Acinetobacter species 
isolated from blood cultures taken from 
patients presenting to the hospital or already 
in hospital;

•	 to examine the extent of co-resistance and 
multidrug resistance in the major species;

•	 to detect emerging resistance to reserve 
agents such as carbapenems and colistin; and

•	 to examine the molecular basis of resistance 
to third-generation cephalosporins, quinolo-
nes and carbapenems.

Methods

Study design

From 1 January to 31 December 2021, thirty 
laboratories servicing 48 hospitals across 
Australia, including four private hospitals and 
11 regional or district hospitals from north-west 
Western Australia, collected either all or up to 
200 isolates from different patient episodes of 
bacteraemia.

Species identification

Isolates were identified using the routine 
method at each institution: Vitek®, Phoenix™ 
automated microbiology systems or, where 
available, matrix assisted laser desorption/
ionisation – time of flight (MALDI-ToF) mass 
spectrometry.

Susceptibility testing

Testing was performed by two commercial semi-
automated methods, Vitek®  2 (BioMérieux, 
France) or Phoenix™ (Becton Dickinson, 
USA), which are calibrated to the International 
Organization for Standardization (ISO) refer-
ence standard method of broth microdilution. 
Commercially available Vitek AST-N246, Vitek 
AST N-410 or Phoenix NMIC-422 cards were 
utilised by all participants throughout the 
survey period. The CLSI M100 and EUCAST 
v12.0 breakpoints from January 2022 have been 
employed in the analysis.1,2

Multidrug resistance

The definitions used by Magiorakos et al. were 
applied in this survey,3 where multidrug resist-
ance (MDR) was defined as resistance to one or 
more agent in three or more antimicrobial cat-
egories. For each species, antimicrobials were 
excluded from the count if they are affected by 
natural resistance mechanisms.
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Whole genome sequencing

The following isolates were referred to a cen-
tral laboratory (Centre for Infectious Diseases 
and Microbiology, The Westmead Institute for 
Medical Research):

•	 E. coli, Klebsiella spp., Proteus spp. and Sal-
monella spp. with ceftazidime or ceftriaxone 
minimum inhibitory concentration (MIC) > 
1 mg/L, or cefoxitin MIC > 8 mg/L;

•	 any other Enterobacterales with cefepime 
MIC > 1 mg/L;

•	 Salmonella spp. with ciprofloxacin MIC > 
0.25 mg/L;

•	 Enterobacterales with meropenem MIC > 
0.125 mg/L (> 0.25 if tested using Vitek);

•	 P. aeruginosa or Acinetobacter spp. with 
meropenem MIC > 4 mg/L;

•	 any isolate with amikacin MIC > 32 mg/L;

•	 and any isolate with colistin MIC < 4 mg/L 
(except those with intrinsic resistance to 
colistin).

All referred isolates underwent whole genome 
sequencing (WGS).

Genomic DNA for WGS was extracted using 
the DNeasy® Blood & Tissue Kit (Qiagen) 
according to the manufacturer’s instruc-
tions for gram-negative bacteria. WGS was 
performed by the Antimicrobial Resistance 
Laboratory, Microbial Genomics Reference 
Laboratory, Centre for Infectious Diseases and 
Microbiology Laboratory Services (CIDMLS), 
Institute of Clinical Pathology and Medical 
Research (ICPMR), Westmead Hospital using 
the Illumina NextSeq™ 500 platform. Data were 
analysed using a modification of the Nullarbor 
bioinformatic pipeline,4 incorporating searching 
contigs against the NCBI AMRFinder databaseii 

ii	 https://www.ncbi.nlm.nih.gov/bioproject/PRJNA313047.

using ABRicate5 and AMRFinder,6 followed by 
a custom AMR-specific pipeline which includes 
a read-based search using ARIBA7 against the 
CARD8 and NCBI databases. Ambiguities and 
potential multiple gene copies/variants were 
checked manually by mapping reads to refer-
ence genesiii using Geneious.

Results

The species isolated, and the numbers of 
each, are listed in Table 1. Enterobacterales 
accounted for 90.6%, followed by P. aeruginosa 
(8.3%) and Acinetobacter species (1.1%). In the 
Enterobacterales, 87.6% of all isolates belonged 
to three genera: Escherichia (61.4%); Klebsiella 
(20.5%); and Enterobacter (5.7%). Major resist-
ances and non-susceptibilities for the top six 
ranked species are listed in Table 2. We utilised 
non-susceptibility as an epidemiological tool to 
provide important information about emerg-
ing acquired resistance, recognising that even 
though some of these isolates remain within 
therapeutic range for specific antibiotics, these 
isolates tend to be divergent from the wild-type 
distribution. In addition to resistant isolates, 
isolates categorised as intermediate accord-
ing to CLSI or ‘sensitive, increased exposure’ 
according to EUCAST were included as non-
susceptible. Multiple acquired resistances by 
species are shown in Table 3. About one fifth of 
E. coli isolates (19.0%), 6.2% of K. pneumoniae 
complex isolates, and 7.1% of E. cloacae complex 
isolates would be considered multi-drug resist-
ant. A more detailed breakdown of resistance 
and non-susceptibility by state and territory is 
provided in the online GnSOP 2021 report.iv

iii	 https://www.ncbi.nlm.nih.gov/pathogens/isolates#/refgene/.

iv	 https://agargroup.org.au/agar-surveys/.
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Escherichia coli

The moderately high levels of resistance to 
ampicillin (and therefore amoxicillin) observed 
were at similar levels to the 2020 survey (2021: 
51.4%/53.2%; versus 2020: 51.4%/53.1%, CLSI/
EUCAST criteria), with the same lower rates 
for amoxicillin-clavulanic acid (12.6%/– inter-
mediate, 7.7%/– resistant). Non-susceptibility 
to third generation cephalosporins was 
also maintained (ceftriaxone 12.6%/12.6%, 

ceftazidime 6.3%/13.2%) versus the degree of 
non-susceptibility found in 2020. Moderate lev-
els of resistance to cefazolin (23.1%/23.1%) and 
trimethoprim–sulfamethoxazole (29.5%/29.5%) 
were detected. Ciprofloxacin non-susceptibility 
was found in 16.6%/16.6% of E. coli isolates, 2.8 
percentage points lower than the 2020 survey. 
Resistance to gentamicin (7.9%/8.6%), pipera-
cillin-tazobactam (2.8%/6.5%), and cefepime 
(2.6%/3.6%) was low. Four isolates (0.1%) 
had elevated meropenem MICs (≥ 0.5 mg/L). 

Table 1: Number and proportion of species isolated, blood cultures, AGAR, 2021

Onset setting, percentage (n)

Species Percentage (n) Community onset Hospital onset

Escherichia coli 55.5 (4,969) 85.0 (4,225) 15.0 (744)

Klebsiella pneumoniae complex 13.9 (1,247) 71.5 (891) 28.5 (356)

Pseudomonas aeruginosa 8.3 (745) 60.8 (453) 39.2 (292)

Enterobacter cloacae complex 5.0 (450) 56.4 (254) 43.6 (196)

Proteus mirabilis 3.5 (314) 87.3 (274) 12.7 (40)

Klebsiella oxytoca 3.0 (265) 69.1 (183) 30.9 (82)

Serratia marcescens 2.3 (202) 54.5 (110) 45.5 (92)

Klebsiella aerogenes 1.3 (119) 62.2 (74) 37.8 (45)

Citrobacter koseri 1.1 (94) 81.9 (77) 18.1 (17)

Citrobacter freundii complex 1.0 (88) 63.6 (56) 36.4 (32)

Morganella morganii 1.0 (88) 70.5 (62) 29.5 (26)

Salmonella species (non-typhoidal) 0.9 (81) 98.8 (80) 1.2 (1)

Acinetobacter baumannii complex 0.5 (48) 60.4 (29) 39.6 (19)

Raoultella ornithinolytica 0.3 (28) 67.9 (19) 32.1 (9)

Klebsiella speciesa 0.3 (26) 69.2 (18) 30.8 (8)

Enterobacter speciesa 0.2 (16) 56.3 (9) 43.8 (7)

Providencia rettgeri 0.1 (13) 69.2 (9) 30.8 (4)

Serratia liquefaciens complex 0.1 (12) 83.3 (10) 16.7 (2)

Pantoea agglomerans 0.1 (12) 75.0 (9) 25.0 (3)

Acinetobacter lwoffii 0.1 (11) 90.9 (10) 9.1 (1)

Acinetobacter speciesa 0.1 (11) 90.9 (10) 9.1 (1)

Acinetobacter ursingii 0.1 (10) 60.0 (6) 40.0 (4)

Other species (total n = 35) 1.1 (98) 72.4 (71) 27.6 (27)

Total 8,947 77.6 (6,939) 22.4 (2,008)

a	 Species not determined.
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For the strains with an extended spectrum 
β-lactamase (ESBL) phenotype, ciprofloxa-
cin and gentamicin resistance was found in 
50.1%/50.1% and 30.1%/31.1% respectively.

Most of the referred E. coli with an ESBL phe-
notype (628/659; 95.3%) harboured an Ambler 
class A ESBL gene (507/628, 80.7%); a plasmid 
borne class C gene (pAmpC) (103/628; 16.4%); 
both an ESBL and pAmpC gene (17/628; 2.7%); 
or both an ESBL and a carbapenemase gene 
(1/628; 0.2%). The dominant β-lactamase genes 
in E.  coli were blaCTX-M types, as found previ-
ously. Of 628 E. coli isolates with a confirmed 
β-lactamase gene, 524 (83.4%) had one or more 
blaCTX-M genes detected by WGS, either blaCTX-M 
group 9 (n = 265); blaCTX-M group 1 (n = 253); 
both blaCTX-M group 1 and group 9 (n = 4); or a 
blaCTX-M group 1/9/1 hybrid (n = 2). Of 120 E. coli 
isolates with pAmpC, 66 (55.0%) harboured 
blaDHA-1; 52 (43.3%) harboured a blaCMY-2-like 
gene; and two (1.7%) harboured both blaDHA-1 
and a blaCMY-2-like gene.

Klebsiella pneumoniae complex

K. pneumoniae complex isolates showed slightly 
higher levels of resistance to piperacillin-tazo-
bactam than E. coli, but showed lower rates of 
resistance to amoxicillin-clavulanic acid, cefa-
zolin, ceftriaxone, ciprofloxacin, gentamicin, 
and trimethoprim-sulfamethoxazole. Eleven 
K.  pneumoniae complex isolates (0.9%) had 
elevated meropenem MICs (see below). Most 
of the referred K. pneumoniae complex isolates 
with an ESBL phenotype (81/94; 86.2%) har-
boured an ESBL gene (57/81; 70.4%), a pAmpC 
gene (17/81; 21.0%), or a carbapenemase gene 
(4/81; 4.9%) alone; or both an ESBL and a 
pAmpC gene (2/81; 2.5%); or both an ESBL and 
a carbapenemase gene (1/81, 1.2%). The major-
ity of ESBL genes (57/60; 95.0%) were blaCTX-M 
types, mostly blaCTX-M group  1 (46/54; 86.0%) 
or both blaCTX-M group 1 and blaSHV-27 (3; 5.0%). 
The only pAmpC gene detected in K. pneumo-
niae complex isolates was blaDHA-1 (19/19).

Enterobacter cloacae complex

Acquired resistance was common among E. clo-
acae complex isolates, to piperacillin-tazobac-
tam (18.4%/28.1%); ceftriaxone (27.0%/27.0%); 
and ceftazidime (23.7%/26.8%). There was 
a moderate level of resistance to gentamicin 
(12.6%/13.6%) and trimethoprim–sulfameth-
oxazole (16.2%/16.0%); cefepime and cipro-
floxacin resistance remained at less than 10%. 
Although E. cloacae complex isolates are gener-
ally more resistant than E. coli to β-lactam anti-
microbials, resistance rates to non-β-lactams 
tend to be lower. Eighteen E.  cloacae complex 
isolates (4.0%) had elevated meropenem MICs.

Carbapenemase genes

Overall, 17 isolates (17 patients) from 13 hos-
pitals from five states/territories were found to 
harbour a carbapenemase gene. Twelve isolates 
harboured blaIMP-4: E.  cloacae complex (six), 
K.  pneumoniae (two), K.  michiganensis (one), 
K.  oxytoca (one), K.  variicola (one) and E.  coli 
(one). The blaNDM-7 gene was detected in one 
E. cloacae complex isolate and one K. pneumo-
niae complex isolate; blaNDM-1 was detected in 
one E.  cloacae complex isolate. The blaOXA-181 
gene was detected in one K.  variicola isolate. 
The blaKPC-2 gene was detected in one K. pneu-
moniae isolate. No carbapenemase genes were 
detected among Acinetobacter or P. aeruginosa 
in the 2021 survey.

Plasmid-borne colistin determinants

The only mcr genes detected among referred 
isolates were mcr-9 (n = 14), which is not associ-
ated with a colistin resistant phenotype but is 
typically found on HI2 plasmids that may carry 
blaIMP-4, and mcr-10 (n = 1).

Discussion

AGAR has been tracking resistance in sentinel 
enteric gram-negative bacteria since 1992. From 
2008, surveillance was segregated into hospital-
onset versus community-onset infections. The 
last year of hospital-onset only surveillance was 



8 of 12 health.gov.au/cdiCommun Dis Intell (2018)  2022;46 (https://doi.org/10.33321/cdi.2022.46.78) Epub 17/11/2022

2011.9 In 2013, the first survey of antimicrobial 
resistance among Enterobacterales isolates from 
bacteraemic patients throughout Australia was 
conducted using an approach similar to the 
European EARS-Net program. The 2021 survey 
was the ninth of antimicrobial resistance among 
Enterobacterales, and the seventh for P. aerugi-
nosa and Acinetobacter spp. from bacteraemic 
patients throughout Australia.

The percentage of resistance in E.  coli in 2021 
was similar to that seen in 2020 for all antimi-
crobial agents tested, except for ciprofloxacin, 
where a 23.3% decrease in resistance was seen. 
For K. pneumoniae complex, the percentage of 
resistance in 2021, relative to 2020, decreased 
by more than 25% for ceftriaxone, ceftazidime, 
gentamicin and ciprofloxacin.

AGAR data show a longitudinal trend of increas-
ing E. coli resistance to key anti-gram-negative 
antimicrobial agents, such as ceftriaxone and 
ciprofloxacin, although both have stabilised 
since 2019. The steady rise in resistance to 
fluoroquinolones in E.  coli is more striking in 
hospital-onset bacteraemia, with a change from 
13.7% to 21.8% between 2013 and 2020; in 2021 
resistance fell to 16.7%.

Carbapenem resistance attributable to acquired 
carbapenemase genes is still uncommon in 
patients with bacteraemia in Australia. Four 
different types (blaIMP [12], blaNDM [3], blaOXA-48-
like [1], and blaKPC-2 [1]) were detected in 17 
isolates from 13 of the participating hospitals. 
Compared with many other countries in 
our region, antimicrobial resistance rates in 
Australian gram-negative bacteria are still 
relatively low,10 but similar to those observed in 
2020 in many Northern European countries.11,12 
Resistance to third-generation cephalosporins 
in E. coli from bacteraemic patients in Australia 
is similar to the European Union and European 
Economic Area average.12

Just under one-fifth of E. coli would be classed 
as MDR, a proportion little changed from the 
2020 survey. The proportion of K. pneumoniae 

complex isolates classed as MDR fell to 6.2% in 
2021, the lowest level recorded since the GnSOP 
surveys commenced.

The impact of COVID-19 on antimicrobial 
resistance remains unclear and may be influ-
enced by a number of contributing factors. 
A combination of COVID-19-related travel 
restrictions on incoming travellers throughout 
much of 2020 and 2021, and an increasing 
awareness of and utilization of antimicrobial 
stewardship as part of the National Safety and 
Quality Health Service Standards 3 implemen-
tation and accreditation Australia-wide,13 may 
have reduced some resistance, particularly for 
ESBLs.

Pharmaceutical Benefits Scheme (PBS) data 
indicate that the COVID-19 pandemic had a 
profound impact on antimicrobial use in 2020, 
with a 40% drop in antimicrobials dispensed 
between March and April in 2020, with use 
remaining at this lower level for the rest of the 
year.14 It is also possible that PBS policy changes 
(effective from 1 April 2020) contributed to this 
drop, as repeat prescriptions and maximum 
quantities were restricted for the five most com-
monly dispensed antimicrobials: amoxicillin, 
amoxicillin–clavulanic acid, cefalexin, doxy-
cycline and roxithromycin. In 2020, there was 
also a change in policy to stop repeats on key 
antibiotics.15

It is also possible that a reduction in elective 
surgery and, related to this, in post-surgical 
bloodstream infections, may have occurred 
during 2020 and 2021.

Future AGAR surveys will help determine if 
the observed reduction in resistance rates is 
sustained.
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