

Australian Government

Department of Health

COMMUNICABLE DISEASES INTELLIGENCE

2021 Volume 45 https://doi.org/10.33321/cdi.2021.45.68

Australian Gonococcal Surveillance Programme

1 April to 30 June 2021

Monica M Lahra, Masoud Shoushtari, Tiffany R Hogan

www.health.gov.au/cdi

Communicable Diseases Intelligence

ISSN: 2209-6051 Online

This journal is indexed by Index Medicus and Medline.

Creative Commons Licence - Attribution-NonCommercial-NoDerivatives CC BY-NC-ND

 $\ensuremath{\mathbb S}$ 2021 Commonwealth of Australia as represented by the Department of Health

This publication is licensed under a Creative Commons Attribution-Non-Commercial NoDerivatives 4.0 International Licence from <u>https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode</u> (Licence). You must read and understand the Licence before using any material from this publication.

Restrictions

The Licence does not cover, and there is no permission given for, use of any of the following material found in this publication (if any):

- the Commonwealth Coat of Arms (by way of information, the terms under which the Coat of Arms may be used can be found at www.itsanhonour.gov.au);
- any logos (including the Department of Health's logo) and trademarks;
- any photographs and images;
- any signatures; and
- any material belonging to third parties.

Disclaimer

Opinions expressed in Communicable Diseases Intelligence are those of the authors and not necessarily those of the Australian Government Department of Health or the Communicable Diseases Network Australia. Data may be subject to revision.

Enquiries

Enquiries regarding any other use of this publication should be addressed to the Communication Branch, Department of Health, GPO Box 9848, Canberra ACT 2601, or via e-mail to: <u>copyright@health.gov.au</u>

Communicable Diseases Network Australia

Communicable Diseases Intelligence contributes to the work of the Communicable Diseases Network Australia. <u>http://www.health.gov.au/cdna</u>

Communicable Diseases Intelligence (CDI) is a peer-reviewed scientific journal published by the Office of Health Protection and Response, Department of Health. The journal aims to disseminate information on the epidemiology, surveillance, prevention and control of communicable diseases of relevance to Australia.

Editor

Jennie Hood

Deputy Editor Simon Petrie

Design and Production Kasra Yousefi

Editorial Advisory Board

David Durrheim, Mark Ferson, John Kaldor, Martyn Kirk and Linda Selvey

Website

http://www.health.gov.au/cdi

Contacts

CDI is produced by the Office of Health Protection and Response, Australian Government Department of Health, GPO Box 9848, (MDP 6) CANBERRA ACT 2601

Email:

cdi.editor@health.gov.au

Submit an Article

You are invited to submit your next communicable disease related article to the Communicable Diseases Intelligence (CDI) for consideration. More information regarding CDI can be found at: http://health.gov.au/cdi.

Further enquiries should be directed to:

cdi.editor@health.gov.au.

Quarterly report

Australian Gonococcal Surveillance Programme

1 April to 30 June 2021

Monica M Lahra, Masoud Shoushtari, Tiffany R Hogan

Introduction

The National Neisseria Network (NNN), Australia, comprises reference laboratories in each state and territory that report data on susceptibility profiles for clinical *Neisseria gonorrhoeae* isolates from each jurisdiction for an agreed group of antimicrobial agents for the Australian Gonococcal Surveillance Programme (AGSP). The antibiotics—ceftriaxone, azithromycin, ciprofloxacin, and penicillin—represent current or potential agents used for the treatment of gonorrhoea. Ceftriaxone, combined with azithromycin, is the recommended treatment regimen for gonorrhoea in the majority of Australia. However, there are substantial geographic differences in susceptibility patterns in Australia with certain remote regions of the Northern Territory and Western Australia having low gonococcal antimicrobial resistance rates. In these regions, an oral treatment regimen comprising amoxycillin, probenecid, and azithromycin is recommended for the treatment of gonorrhoea. Additional data on other antibiotics are reported in the AGSP Annual Report. The AGSP has a programme-specific quality assurance process.

Results

A summary of the proportion of isolates with decreased susceptibility to ceftriaxone (minimum inhibitory concentration, MIC \geq 0.06 mg/L); and the proportion resistant to azithromycin (MIC \geq 1.0 mg/L), penicillin (MIC \geq 1.0 mg/L), and ciprofloxacin (MIC \geq 1.0 mg/L) for Quarter 2 2021 is shown in Table 1.

Ceftriaxone

For the AGSP, monitoring of ceftriaxone decreased susceptibility (DS) includes the MIC values ≥ 0.06 mg/L and is further differentiated by those isolates with MIC value 0.06 mg/L, and those isolates with MIC values ≥ 0.125 mg/L. In the second quarter of 2021, the proportion of isolates with ceftriaxone DS in Australia was 0.9%, lower than the proportion reported annually in 2020, as shown in Table 2.

The national trend of isolates with ceftriaxone decreased susceptibility (MIC 0.06 and \geq 0.125 mg/L) since 2010 is shown in Table 2.

Azithromycin

In the second quarter of 2021, the proportion of isolates with resistance to azithromycin (MIC \geq 1.0 mg/L) in Australia was 4.2%, slightly higher than the proportion reported nationally in 2020 (3.9%). Azithromycin resistance peaked in Australia in 2017 and has declined since as shown in Table 3.¹ This will continue to be monitored over the quarters of 2021. Globally there have been reports of increasing azithromycin resistance to azithromycin, with the exception of the Australian Capital Territory, Tasmania, the Northern Territory and remote regions of Western Australia.

Dual therapy using ceftriaxone plus azithromycin is the recommended treatment for gonorrhoea as a strategy to temper development of more widespread ceftriaxone resistance. Patients with infections in extragenital sites, where the isolate has decreased susceptibility to ceftriaxone, should have test of cure cultures collected. Continued surveillance to monitor Table 1: Gonococcal isolates showing decreased susceptibility to ceftriaxone, and resistance to azithromycin, penicillin and ciprofloxacin, Australia, 1 April to 30 June 2021, by state or territory

State or territory	Number of isolates tested	Decreased susceptibility	us ceptibility			Resistance	ance		
		Ceftriaxone	axone	Azithromycin	omycin	Penicillin ^a	illin ^a	Ciprofloxacin	oxacin
	42, 2021	c	%	c	%	c	%	c	%
Australian Capital Territory	60	0	0.0	0	0.0	19	31.7	19	31.7
New South Wales	599	2	0.3	62	10.4	274	45.7	401	60.9
Queensland	287	-	0.3	-	0.3	109	38.0	132	46.0
South Australia	80	2	2.5	2	2.5	22	27.5	34	42.5
Tasmania	11	1	9.1	0	0.0	3	27.3	9	54.5
Victoria	557	10	1.8	4	0.7	234	42.0	320	57.5
Northern Territory non-remote	14	0	0.0	0	0.0	0	0.0	-	1.7
Northern Territory remote	33	0	0.0	0	0.0	0	0.0	0	0.0
Western Australia non-remote	124	0	0.0	9	4.8	49	39.5	54	43.5
Western Australia remote	22	0	0.0	0	0.0	1	4.5	2	9.1
Australia	1,787	16	0.9	75	4.2	711	39.8	969	54.2
a Penicillin resistance includes a MIC value of \ge 1.0 mg/L or penicillinase production	les a MIC value of \geq	1.0 mg/L or penicilli	nase production						

Table 2: Percentage of gonococcal isolates with decreased susceptibility to ceftriaxone (MIC 0.06 and \ge 0.125 mg/L), Australia, 2010 to 2020, 1 January to 31 March 2021 and 1 April to 30 June 2021

Ceftriaxone MIC mg/L	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021 Q1	2021 Q2
0.06	4.80%	3.20%	4.10%	8.20%	4.80%	1.70%	1.65%	1.02%	1.67%	1.19%	0.87%	0.86%	0.90%
≥0.125	0.10%	0.10%	0.30%	0.60%	0.60%	0.10%	0.05%	0.04%	0.06%	0.11%	0.07%	0.00%	0.00%
Total	4.90%	3.30%	4.40%	8.80%	5.40%	1.80%	1.70%	1.06%	1.73%	1.30%	0.94%	0.86%	0.90%

Table 3: Percentage of gonococcal isolates with resistance to azithromycin (MIC \ge 1.0 mg/L), Australia, 2012 to 2020, 1 January to 31 March 2021 and 1 April to 30 June 2021.

Azithromycin Resistance	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021 Q1	2021 Q2
$MIC \ge 1 mg/L$	1.3%	2.1%	2.5%	2.6%	5.0%	9.3%	6.2%	4.6%	3.9%	4.8%	4.2%

N. gonorrhoeae with elevated MIC values, coupled with sentinel site surveillance in high-risk populations, remains essential to inform therapeutic strategies, to identify incursion of resistant strains, and to detect instances of treatment failure.

Author details

Monica M Lahra^{1,2}

Masoud Shoushtari¹

Tiffany R Hogan¹

- 1. The World Health Organisation Collaborating Centre for STI and AMR and Neisseria Reference Laboratory, NSW Health Pathology, Microbiology, The Prince of Wales Hospital, Randwick, NSW, 2031
- 2. School of Medical Sciences, Faculty of Medicine, the University of New South Wales, Kensington, NSW, 2052

Corresponding author

Professor Monica M Lahra,

The World Health Organization Collaborating Centre for STI and AMR, Sydney, and Neisseria Reference Laboratory, NSW Health Pathology, Microbiology, The Prince of Wales Hospital, Randwick, NSW, 2031.

Telephone: +61 2 9382 9054 Facsimile: +61 2 9382 9098 Email: monica.lahra@health.nsw.gov.au

References

- 1. Lahra MM, Shoushtari M, George CRR, Armstrong BH, Hogan TR. Australian Gonococcal Surveillance Programme Annual Report 2020. *Commun Dis Intell (2018)*. 2021;45. doi: https://doi.org/10.33321/ cdi.2021.45.58.
- 2. Unemo M. Current and future antimicrobial treatment of gonorrhoea the rapidly evolving *Neisseria gonorrhoeae* continues to challenge. *BMC Infect Dis.* 2015;15:364.