The Department of Health acknowledges the providers of the many sources of data used in this report and greatly appreciates their contribution.

KEY MESSAGES

- **Activity** – In the last fortnight, at the national level, indicators for person to person transmission of influenza and influenza-like illness (ILI) continued to decline, after reaching a peak in early September. Activity levels have returned to or are approaching baseline levels.

- **Severity** – Clinical severity for the season to date, as measured through the proportion of patients admitted directly to ICU, and deaths attributed to influenza, is moderate.

- **Impact** – Currently, the impact of circulating influenza on society, as measured through the proportion of people with ILI taking time off work, and the burden on hospitals, is low.

- **Virology** – In the last fortnight, the majority of confirmed influenza cases reported nationally were influenza A (83%), and where subtyping data were available, influenza A(H1N1)pdm09 was the dominant subtype.

- **At-risk populations**: Children aged less than 10 years appear to be more commonly infected with influenza; however the severity of illness in this population is on par with other age-groups.

- **Vaccine effectiveness**: Based on currently available data, vaccinated individuals were 68% less likely to present to a GP and 66% less likely to be hospitalised due to all influenza, when compared to unvaccinated individuals.

- This will be the final fortnightly Australian Influenza Surveillance Report for 2018, unless unusual activity becomes apparent over the summer months. A 2018 Season Summary will be released by the end of the year.

ANALYSIS

Introduction

Each year, the influenza virus changes and different strains can circulate in the population. Particular strains and subtypes of influenza can affect different groups of the population more than others. Depending on the susceptibility of the population, the strains that are circulating and the changes to the virus itself, the influenza season can be very different year to year. Our surveillance systems help us to understand influenza activity, severity of the infection in individuals and impact of the illness on society in Australia. We are also able to monitor which influenza strains are circulating, which populations might be more affected, the effectiveness of the vaccine, and any resistance to antiviral drugs that has developed.

1. **Activity**

 Activity measures the capacity of the circulating influenza viruses to spread person to person and may be measured indirectly through systems that monitor influenza-like illness and more directly through systems that monitor laboratory confirmed influenza.

Influenza-like illness

Overall, ILI in the community is low and is within the historical range.

- **Flutracking**: 1.2% and 1.1% of Flutracking participants reported ILI (fever and cough) in weeks 41 and 42, respectively, which is within the bounds of the last five years. (Figure 1). Following a small peak in mid-August, activity levels have continued to decrease.

- **Healthdirect**: 4.6% and 5.3% of calls to the Healthdirect public health hotline were related to ILI in weeks 41 and 42, respectively (Figure 2). Following a small peak in early July and a plateau through to the end of September, there has been a decreasing trend in activity levels, with a sharp decline in the last fortnight.

- **Sentinel General Practitioners (ASPREN)**: 5.1 per 1,000 consultations in sentinel general practices were due to ILI in week 42 (Figure 3). This is a slight decrease from the previous week of 5.6/1000 consultations. ILI consultations are within the bounds of the historical range for this time of year.
Confirmed influenza

Influenza is circulating at low levels and continues to decline as a cause of ILI this fortnight.

- **Proportion of ILI with confirmed influenza seen by sentinel GPs**: Of the 64 ILI cases presenting to sentinel ASPREN GPs this fortnight who were tested for influenza, 10 (15.6%) had a positive result. This is a decrease from the previous fortnight when 28.1% (25/89) of swabbed ILI patients tested positive for influenza. All influenza positive cases were influenza A, which was the most common respiratory virus detected. This was followed by human metapneumovirus (n=9, 14.1%).

- **Proportion of ILI with confirmed influenza in sentinel labs**: Since the last fortnight, overall detections of influenza across sentinel laboratories have continued to decline (Figure 4). The pooled unweighted percentage of tests positive for influenza across all sentinel laboratories was 6.5% in week 42, a slight decrease from 7.1% reported in week 41. The most commonly detected respiratory virus this fortnight was:
 - rhinovirus in both weeks 41 and 42 by the Institute of Clinical Pathology and Medical Research;
 - human metapneumovirus (hMPV) and influenza A in week 41 and picornavirus in week 42 by the Victorian Infectious Disease Reference Laboratory (VIDRL);
 - hMPV in both weeks 41 and 42 by PathWest; and
 - parainfluenza in week 41 and rhinovirus in 42 by Tasmania.

- **NNDSS notifications**: This fortnight there were 2,931 notifications of laboratory confirmed influenza to the National Notifiable Diseases Surveillance System (NNDSS), which is a decrease in reported cases compared to the previous fortnight (n=4,608). There have been 44,694 notifications year to date. Notifications remain low and have been declining following a small peak in early September (Figure 5).

- **FluCAN**: Since seasonal sentinel hospital surveillance began on 3 April 2018, a total of 725 people have been admitted with confirmed influenza (Figure 6). This is approximately one-third the number of hospitalisations than the 5 year average for the same period (n=2,226). Following a small peak in September, there has been a rapid decline in hospitalisations per week since early October.

Figure 1. Proportion of fever and cough among FluTracking participants, Australia, between May and October, 2013 to 2018, by month and week.
Figure 2. Per cent of calls to Healthdirect related to ILI, Australia, 1 January 2013 to 21 October 2018, by month and week of call.

Source: Healthdirect

Figure 3. Unweighted rate of ILI reported from sentinel GP surveillance systems, Australia, 1 January 2013 to 21 October 2018, by month and week.

Source: ASPREN and VicSPIN (Note: weeks 41 and 42 do not include VicSPIN data)
Figure 4. Proportion of sentinel laboratory tests positive for influenza, 1 January to 21 October 2018, by contributing laboratory or jurisdiction and month and week.

* Pooled percentage positive indicators should be interpreted with caution, noting that collectively pooled contributing laboratories are not representative of testing across Australia and individually contributing laboratories may not be representative of the jurisdiction in which they are located.

^ Weighted according to jurisdictional population in which laboratories are located.

The percentage of tests positive for influenza in the interseasonal period should be interpreted with caution due to small numbers of tests being undertaken in this time, resulting in high variability in the indicators.

Figure 5. Notifications of laboratory confirmed influenza, Australia, 1 January 2013 to 21 October 2018, by month and week of diagnosis.

Source: NNDSS
Figure 6. Number of influenza hospitalisations at sentinel hospitals, between March and October, 2013 to 2018 by month and week.

Geographical distribution of activity

- **Jurisdictional reports:** In the fortnight ending 21 October 2018, the geographic spread of influenza activity was reported by state and territory health departments as being sporadic in the Australian Capital Territory (ACT), both regions of the Northern Territory (NT), the Central and Tropical regions of Queensland (QLD) and the Northwest region of Western Australia (WA). Activity was reported as being localised in the Southern region of QLD, New South Wales (NSW), Tasmania (TAS) and the Rural South region of WA. South Australia (SA) and Victoria (VIC) reported regional levels of activity, and the Perth metro region of WA reported widespread activity. There was no change in influenza activity compared to the previous fortnight in the Northwest and Rural South regions of WA. An increase in activity was reported in the Central Australian region of NT and the Tropical region of QLD. ACT, NSW, the Top End region of NT, SA, the Central and Southern regions of QLD, the Perth metro region of WA and VIC reported a decrease in activity levels (Figure 7).

- **NNDSS:** Of the 2,931 notifications of influenza reported to the NNDSS in the last fortnight, 794 from VIC, 747 from QLD, 557 were from NSW, 519 from SA, 239 from WA, 37 from TAS, 22 from ACT, and 16 from NT (Figure 8). Of the 44,694 notifications of influenza reported to the NNDSS this year to 21 October 2018, 15,176 from NSW, 11,782 were from QLD, 7,972 from VIC, 4,957 from WA, 3,867 from SA, 414 from ACT, 327 from TAS and 199 from the NT.

For further information regarding influenza activity at the jurisdictional level, please refer to the following State and Territory health surveillance reports:

- ACT: [Influenza report](http://health.act.gov.au/node/41)
• TAS: fluTAS Reports (http://www.dhhs.tas.gov.au/publichealth/communicable_diseases_prevention_unit)

Figure 7. Map of influenza activity by state and territory, Australia, 18 June to 21 October 2018.

Figure 8. Notifications of laboratory confirmed influenza, 1 January to 21 October 2018, by state or territory and week.

Source: NNDSS
2. Severity

Severity is a measure of adverse outcomes or complications as a result of influenza or influenza-like illness (ILI) such as hospital referrals, admissions, need for intensive care and deaths. Measuring and understanding the severity of circulating influenza is difficult to establish at the beginning of the influenza season. The proportion of confirmed influenza cases with serious outcomes might be skewed initially because there are only a small number of people notified with influenza at the beginning of the season. This means that the measure of severity will vary substantially fortnight to fortnight until after the peak of the season when there is enough data for measurements to stabilise. An assessment of severity be provided once the signals become clearer.

The clinical severity of circulating influenza this fortnight is moderate compared to recent years.

Intensive care admissions

- FluCAN: This fortnight, 4 of the 60 people admitted to sentinel hospitals with confirmed influenza were admitted to ICU (6.7%). Since seasonal sentinel hospital surveillance began on 3 April 2018, 59 (8.1%) of the 725 people admitted to sentinel hospitals with confirmed influenza were admitted to ICU.

Deaths in confirmed influenza cases

- NNDSS: So far in 2018, 55 influenza associated deaths have been notified to the NNDSS. The majority of deaths were due to influenza A (75%, n=41). The median age of deaths notified was 80 years (range 1 to 100 years). The number of influenza-associated deaths reported to the NNDSS does not represent the true mortality associated with this disease. The number of deaths is reliant on the follow up of cases to determine the outcome of their infection. The follow up of cases is not a requirement of notification, and are only inclusive of laboratory-confirmed cases of influenza. Due to retrospective revision, the variation across jurisdictions in methodology, representativeness and timeliness of death data, and reporting of an outcome of infection not being a requirement of notification, year on year comparisons of deaths in notified cases of influenza may not be reliable.

3. Impact

Impact measures how the influenza epidemic affects society, including stress on health-care resources and societal and economic consequences.

Currently the impact of circulating influenza on society and the healthcare system is low.

Absenteism

- Flutracking: 0.7% of Flutracking survey respondents reported having ILI and taking time off regular duties while unwell in weeks 41 and 42. This is a low level of impact when compared to trends in recent years.

Use of hospital beds

- FluCAN: Since seasonal sentinel hospital surveillance began on 3 April 2018, 10.5% of hospital beds available in FluCAN hospitals were occupied by patients with confirmed influenza. This is a low level of impact when compared to temporal trends.

4. Virology

National notification data

- NNDSS: In the reporting fortnight, 83% of notifications of laboratory confirmed influenza to the NNDSS were influenza A (77% influenza A(unsubtyped), 4% influenza A(H1N1)pdm09 and 2% influenza A(H3N2)), and 16% were influenza B (Figure 9).

- NNDSS: For the year to 21 October 2018, 77% of notifications of laboratory confirmed influenza to the NNDSS were influenza A (67% influenza A(unsubtyped), 7% influenza A(H1N1)pdm09 and 3% influenza A(H3N2)), 23% were influenza B, and less than 1% were influenza C, influenza A&B co-infections or untyped. The proportion of all notifications year to date reported as influenza A has ranged across jurisdictions from 67% in the NT to 81% in NSW (Figure 10). Where subtyping information was available, all jurisdictions have reported a greater proportion of influenza A(H1N1)pdm09 than influenza A(H3N2).
Reference Laboratory data

- **World Health Organization Collaborating Centre for Reference and Research on Influenza (WHOCC):** From 1 January to 22 October 2018, the WHOCC characterised 972 influenza viruses. Of these, 82% were influenza A (58% influenza A(H1N1)pdm09 and 24% influenza A(H3N2)), 18% were influenza B (17% influenza B Yamagata lineage and 1% influenza B Victoria lineage), and less than 1% were influenza A(H1N1) and influenza A(H3N2) co-infections.

Sentinel laboratory surveillance

- **In the reporting fortnight, 87.4% of influenza positive samples detected in sentinel laboratories were influenza A (44.3% were influenza A(unsubtyped), 28.4% influenza A(H1N1)pdm09, and 14.8% were influenza A(H3N2)), 12.6% were influenza B and less than 1% was influenza C (Figure 11).**

Sentinel GP surveillance

- **ASPREN:** Of the 10 influenza positive samples detected this fortnight through swab testing patients presenting with ILI to ASPREN sentinel GPs, 8 were influenza A (unsubtyped) and 2 were influenza A(H1N1)pdm09 (Figure 12).

Sentinel hospital surveillance

- **FluCAN:** Since seasonal sentinel hospital surveillance began on 3 April 2018, 87% of admissions with confirmed influenza to sentinel hospitals were influenza A (59% A(unsubtyped), 26% influenza A(H1N1)pdm09 and 2% influenza A (H3N2)) and 13% were influenza B. (Figure 13). Of the 59 patients admitted directly to ICU, 88% were infected with influenza A (61% influenza A(unsubtyped) and 27% influenza A(H1N1)pdm09) and 12% were infected with influenza B.

- **FluCAN:** The proportion of patients admitted directly to ICU was higher in patients infected with influenza A(H1N1)pdm09 (8.3%), than in admitted patients infected with influenza A(H3N2) (0%) and influenza B (7.3%).

Figure 9. Per cent of laboratory confirmed influenza, Australia, 1 January to 21 October 2018, by subtype and week.
Figure 10. Per cent of notifications of laboratory confirmed influenza, Australia, 1 January to 21 October 2018, by subtype and state or territory.

Figure 11. Proportion of sentinel laboratory tests positive for influenza and total number of specimens tested, 1 January to 21 October 2018, by subtype and month and week.
Figure 12. Proportion of respiratory viral tests positive for influenza in ASPREN ILI patients and ASPREN ILI consultation rate*, Australia, 1 January to 21 October 2018, by month and week.

Source: ASPREN

Figure 13. Number of influenza hospitalisations at sentinel hospitals by subtype and ICU admission, 3 April to 21 October 2018, by month and week.

Source: FluCAN
5. At-risk Populations

National notification data

- **NNDSS**: So far in 2018, notification rates have been highest in children aged under 10 years (351.1 notifications per 100,000), with a secondary smaller peak in adults aged 80 years or older (231.3 notifications per 100,000) (Figure 14). Where subtyping information was available, notifications of influenza A(H1N1)pdm09 were highest in children aged less than 10 years (32.5 per 100,000) and notifications of influenza A(H3N2) were highest in adults aged 80 years and older (20.7 per 100,000). Notification rates for influenza B were highest in adults aged 85 years and over (72.9 per 100,000), followed by children aged 5-9 years (63.6 per 100,000).

- **NNDSS**: Where subtyping information was available, influenza A (H1N1)pdm09 was the predominant strain in all age groups except in adults aged 65 years and older, where influenza A(H3N2) accounted for a greater proportion of influenza A. (Figure 15).

Sentinel hospital surveillance

- **FluCAN**: Since seasonal sentinel hospital surveillance began on 3 April 2018, 34.8% of people admitted with confirmed influenza were children aged 15 years and younger, 38.9% were adults aged between 16 and 64 years, and 26.3% were adults aged 65 years and older. Of the children admitted with confirmed influenza to date, 7.1% were admitted to ICU. This is slightly less than the percentage of adults aged between 16 and 64 years (9.2%) and adults aged 65 years and older (7.8%) that were admitted to ICU.

Figure 14. Rate of notifications of laboratory confirmed influenza, Australia, 1 January to 21 October 2018, by age group and subtype.
Figure 15. Notifications of laboratory confirmed influenza by week of diagnosis and cumulative year-to-date, Australia, 1 January to 21 October 2018, by age group and subtype.

- **0-4 years**
- **5-17 years**
- **18-49 years**
- **50-64 years**
- **65+ years**

Source: NNDSS
6. Vaccine effectiveness

Australian Influenza Vaccines Composition 2018

The influenza virus strains included in the 2018 seasonal influenza vaccines in Australia are:

- A/Michigan/45/2015, (H1N1)pdm09-like virus;
- A/Singapore/INFIMH-16-0019/2016, (H3N2)-like virus; and
- B/Phuket/3073/2013-like virus, Yamagata lineage.
- B/Brisbane/60/2008-like virus, Victoria lineage.

The best way to determine how well the vaccine protects against circulating viruses during the season is by determining the vaccine effectiveness. These estimates provide an indication of how effective the vaccine was in providing protection against influenza infection.

Interim vaccine effectiveness estimates

Interim vaccine effectiveness estimates have been determined using GP presentation and hospitalisation data. Compared to unvaccinated individuals, vaccinated individuals were 68% and 66% less likely to present to a GP or be hospitalised, respectively, due to all influenza (Table 1). The effectiveness for both of these outcomes was higher for influenza A (H1N1) (77% and 83%, respectively), and against outpatient presentation for influenza B (79%). Estimates for influenza B against inpatient presentation was lower at 54% (not statistically significant). Estimates for influenza A(H3N2) were not able to be calculated due to an inadequate sample size.

Table 1. Interim vaccine effectiveness estimates for outpatient and inpatient surveillance, 2018

<table>
<thead>
<tr>
<th></th>
<th>GP presentation^ (outpatient)</th>
<th>Hospitalisation* (inpatient)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All influenza</td>
<td>68% [45, 82]</td>
<td>66% [48, 78]</td>
</tr>
<tr>
<td>A(H1N1)pdm09</td>
<td>77% [51, 91]</td>
<td>83% [58, 93]</td>
</tr>
<tr>
<td>A(H3N2)</td>
<td>inestimable</td>
<td>inestimable</td>
</tr>
<tr>
<td>B</td>
<td>79% (26,96)</td>
<td>54% [−15, 82]</td>
</tr>
</tbody>
</table>

^Source: FluCAN; data from 2 April to 3 September 2018
*Source: ASPREN and VicSPIN; data from 7 May to 7 September 2018

Interim vaccine effectiveness estimates are subject to change and can be less precise than final estimates due to the calculation being based on incomplete data. Further information on vaccine effectiveness and its interpretation is provided in Influenza vaccine efficacy, effectiveness and impact explained, which is available on the Department of Health’s Australian Influenza Surveillance Report website (www.health.gov.au/flureport).

WHOCC

From 1 January to 22 October 2018, 646 isolates were characterised for similarity to the corresponding vaccine components by haemagglutination inhibition (HI) assay (Table 2). Influenza A(H1N1)pdm09 viruses and viruses from both influenza B lineages appeared to be antigenically similar to the corresponding vaccine components. Two each of Influenza A(H1N1)pdm09 and influenza B(Yamagata), and no influenza B(Victoria) isolates were characterised as low reactors. The influenza A(H3N2) isolates that were able to be assessed by HI assay appeared to be reasonably matched, although there are ongoing technical issues that significantly limit the WHOCC’s capacity to fully assess the similarity of circulating viruses to the vaccine strain. Three influenza A(H3N2) isolates were characterised as low reactors, and an additional 25 isolates were unable to be characterised in the HI assay due to insufficient haemagglutination titre.
Table 2. Australian influenza viruses typed by HI from the WHOCC, 1 January to 22 October 2018.

<table>
<thead>
<tr>
<th>Type/Subtype</th>
<th>ACT</th>
<th>NSW</th>
<th>NT</th>
<th>QLD</th>
<th>SA</th>
<th>TAS</th>
<th>VIC</th>
<th>WA</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(H1N1) pdm09</td>
<td>14</td>
<td>167</td>
<td>2</td>
<td>99</td>
<td>32</td>
<td>0</td>
<td>13</td>
<td>68</td>
<td>395</td>
</tr>
<tr>
<td>A(H3N2)</td>
<td>4</td>
<td>41</td>
<td>4</td>
<td>45</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>106</td>
</tr>
<tr>
<td>B/Victoria lineage</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>B/Yamagata lineage</td>
<td>5</td>
<td>75</td>
<td>11</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>140</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>285</td>
<td>18</td>
<td>176</td>
<td>49</td>
<td>0</td>
<td>16</td>
<td>79</td>
<td>646</td>
</tr>
</tbody>
</table>

Source: WHO CC

Note: Viruses tested by the WHO CC are not necessarily a random sample of all those in the community.

State indicates the residential location for the individual tested, not the submitting laboratory.

There may be up to a month delay on reporting of samples.

7. Antiviral Resistance

The WHOCC reported that from 1 January to 22 October 2018, none of the 687 influenza viruses tested for neuraminidase inhibitor resistance, demonstrated reduced inhibition to the antiviral drugs Zanamivir or Oseltamivir.

8. Data considerations

No one single system, including notification data, provides the full picture on influenza, because influenza is a common disease and its presenting symptoms are non-specific. The epidemiology of influenza is informed by a number of different systems based in the community, laboratories, primary care and hospitals, as well as official deaths and notifiable diseases data. The information in this report is reliant on the surveillance sources available to the Department of Health at the time of production.

Data in this summary is reported by International Organization for Standardization (ISO) 8601 weeks, with the week ending on Sunday. Throughout the summary, where the year to date is presented, this includes data from 1 January to 21 October 2018. NNDSS data were extracted on 25 October 2018. Due to the dynamic nature of the NNDSS and other surveillance systems, data in this report are subject to retrospective revision and may vary from data reported in other national reports and reports by states and territories. Detailed notes on interpreting the data presented in this report are available at the Department of Health’s Australian Influenza Surveillance Report website (www.health.gov.au/flureport).

While every care has been taken in preparing this report, the Commonwealth does not accept liability for any injury or loss or damage arising from the use of, or reliance upon, the content of the report. Delays in the reporting of data may cause data to change retrospectively. For further details about information contained in this report please contact the Influenza Surveillance Team (flu@health.gov.au).